برای جلوگیری از کارهای تکراری و هدر رفت وقت و انرژی، محققان مدل یادگیری ماشینی را برای سنتز نانوذرات اکسیدآهن به کار گرفتند. این مدل هوش مصنوعی با بررسی شرایط مختلف احتمالی، بهترین مسیر برای سنتز را پیشنهاد داده و ویژگی محصول تولیدشده را نیز پیشبینی میکند.
برای جلوگیری از کارهای تکراری و هدر رفت وقت و انرژی، محققان مدل یادگیری ماشینی را برای سنتز نانوذرات اکسیدآهن به کار گرفتند. این مدل هوش مصنوعی با بررسی شرایط مختلف احتمالی، بهترین مسیر برای سنتز را پیشنهاد داده و ویژگی محصول تولیدشده را نیز پیشبینی میکند.
به طور معمول، محققانی که در تلاش برای ترکیب هدفمند ذرات خاص از مواد هستند، باید به روشهای شهودی یا آزمایش و خطا اعتماد کنند. این رویکرد میتواند ناکارآمد باشد و نیاز به سرمایهگذاری در زمان و منابع قابل توجه دارد.
برای غلبه بر ابهامات این رویکرد، محققان PNNL از قدرت علوم داده و روش یادگیری ماشینی برای کمک به سادهسازی سنتز ذرات اکسید آهن استفاده کردند. نتایج این مطالعه در مجله Chemical Engineering Journal منتشر شده است.
رویکرد آنها به دو موضوع مهم پرداخته است؛ شناسایی شرایط آزمایشی امکانپذیر و پیشبینی ویژگیهای ذرات احتمالی که برای مجموعهای از پارامترها قابل تولید است. مدل آموزشدیده میتواند اندازه و فاز ذرات احتمالی را برای مجموعهای از شرایط آزمایشی پیشبینی کند و پارامترهای سنتز امیدوارکننده و امکانپذیر را برای کشف مشخص کند.
این رویکرد نوآورانه نشاندهنده یک پارادایم جدید برای سنتز ذرات اکسید فلزی است، همچنین این روش به طور قابل توجهی زمان و تلاش صرف شده در رویکردهای سنتز فعلی را اقتصادی کرده و از تکرارهای بیهوده جلوگیری میکند. با آموزش مدل یادگیری ماشینی، این مدل توانست بر روی فرآیندهای سنتز مسلط شود و در نهایت، این رویکرد دقت قابل توجهی در پیشبینی نتایج اکسید آهن بر اساس پارامترهای واکنش سنتز نشان داد. الگوریتم جستجو و رتبهبندی شرایط واکنش قابل قبول بود، به طوری که بر اساس مجموعه دادههای ورودی این الگوریتم خروجیهای مناسبی را ارائه کرد. این مدل همچنین نشان داد عوامل مهمی که پیش از این نادیده گرفته میشد، مانند فشار اعمال شده در طول سنتز تاثیر قابل توجهی در واکنش دارند.