ساخت نسل جدید باتری به کمک هوش مصنوعی

به گزارش سیناپرس، مطالعات جدید در حوزه یادگیری ماشینی می‌تواند طراحی باتری ‌های جامد را تسریع کرده و منجر به دستیابی به فناوری نسل جدید باتری هایی شود که پتانسیل ذخیره انرژی بیشتری نسبت به باتری‌ های لیتیوم یونی داشته و خطر اشتعال در آن ها مرتفع می شود.
با این حال، باتری‌ های جامد زمانی با مشکلاتی مواجه می ‌شوند که مواد درون آنها نسبت به یکدیگر واکنش نشان داده و در نتیجه عملکرد باتری را کاهش می‌ دهند.
تیمی مشترک از محققان آزمایشگاه ملی انرژی های تجدیدپذیر آمریکا (NREL) و دانشگاه ایلینویز روشی برای یادگیری ماشینی ابداع کردند که می تواند به طور دقیق خواص ترکیبات معدنی را پیش بینی کند. 
بر اساس یافته های محققین، ترکیبات مورد نظر جامدات کریستالی با اتم های مرتب شده در الگوهای تکراری و سه بعدی هستند. یکی از راه ‌های اندازه‌ گیری پایداری این ساختارهای کریستالی، محاسبه انرژی کل آنها است. 

به گزارش سیناپرس، اگر فازهای واکنشی در سطوح مشترک بین الکترود و الکترولیت در باتری های جامد تشکیل شوند منجر به کاهش ظرفیت و ولتاژ باتری می شود. یافتن مواد سازگار، نیازمند تجزیه نشدن این مواد است اما حوزه گزینه های انتخابی بسیار گسترده است به طوری که برآوردها نشان می دهد که میلیون ها یا حتی میلیاردها ترکیب قابل قبول جامد در انتظار کشف شدن هستند.

پیتر سنت جان (Peter St. John)، محقق و پژوهشگر ارشد این پروژه می گوید: شما نمی توانید این شبیه سازی های بسیار دقیق را روی یک بخش عظیم از این فضای ساختار کریستالی بالقوه انجام دهید چراکه هر کدام نیازمند یک محاسبه بسیار فشرده است که در یک ابر کامپیوتر می تواند تا ساعت ها به طول بیانجامد. بعد از این مرحله، پژوهشگران باید داده های به دست آمده را بررسی تا بتوانند به صورت فیزیکی مواد احتمالی جدید را شناسایی کنند.

در همین راستا و برای تسریع این فرآیند، محققان از نوعی یادگیری ماشینی به نام شبکه عصبی گراف استفاده کردند. شبکه عصبی گراف الگوریتمی است که می تواند برای شناسایی و برجسته کردن الگوها آموزش ببیند. 

باید در نظر داشت که موفقیت هر شبکه عصبی به داده هایی که برای یادگیری استفاده می کند بستگی دارد. به گزارش سیناپرس،محققان برای آموزش شبکه عصبی گراف خود، نمونه های نظری را نه بر اساس طبیعت، بلکه بر اساس محاسبات مکانیکی کوانتومی ایجاد کردند. این رویکرد می‌تواند سرعت کشف مواد جدید با خواص ارزشمند را متحول کرده و به آن‌ها اجازه دهد تا به سرعت، امیدوارکننده ‌ترین ساختارهای کریستالی را نمایان کنند. 
نتایج کامل این پژوهش در آخرین شماره مجله Patterns منتشر شده و در دسترس علاقه مندان قرار دارد.

مترجم: محسن فلاحی پناه
 

No tags for this post.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا